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Abstract
Earlier theoretical and computer studies on the dynamics of strongly coupled
charged particle bilayers have revealed the existence of an energy gap
(ω(k = 0) �= 0, optical behaviour) for the out-of-phase plasmon. This is in
contrast to the correlationless RPA prediction of acoustic (ω ∼ k) behaviour.
We have studied the question whether a classical perturbation calculation for
weak coupling shows the onset of the energy gap, and whether there is a
minimal coupling threshold for the formation of the gap. A formally exact
lowest order expansion technique due to Zhang and Kalman (1992 Phys. Rev.
A 45 5935) has been used.

PACS numbers: 52.25.Mq, 52.27.Gr, 52.27.Cm, 61.46.+w

1. Introduction

Bilayers of charged particles can be realized in various physical systems. In particular,
advances in modern semiconductor nanotechnology have made it possible to routinely fabricate
multiple quantum well structures of parallel electron layers in a strongly correlated liquid phase
(for detailed references see [7]). We consider charged particle bilayers as described by a model
with the following features:

(i) two equal-density (n1 = n2 = n) 2D classical electron liquids (each immersed in its own
2D uniform neutralizing background of positive charge) separated by distance d. The N
electrons in each monolayer occupy the large but bounded area V2D in the planes z = 0
and z = d of a Cartesian coordinate system;

(ii) the interaction is described in species space by the symmetric interaction matrix

φ(k) = ϕ(k)

[
1 b

b 1

]
where ϕ(k) = 2πe2/k b = exp(−kd);
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(iii) scattering on impurities, etc is neglected;
(iv) exchange and other quantum effects are ignored; there is no interlayer tunnelling.

These approximations are reasonable in the strong coupling regime where the particles
are well localized. The interlayer coupling is characterized by the parameter � ≡ βe2a−1 =
βe2√πn. While our treatment is classical, a qualitative correspondence between the classical
model and a (partially) degenerate system can be established via the effective coupling constant
�̃ = [e2/(aε0)][1 − exp(−βε0)], which turns out to be the measure of the coupling strength
for arbitrary degeneracy; ε0 = πnh̄2/m is the zero-temperature Fermi energy of the non-
interacting 2D electron gas, and a = (πn)−1/2 is the 2D Wigner–Seitz radius [7], β−1 = kBT

is the inverse temperature in energy units.
The scalar dielectric function of the system is defined as in [6]:

ε(k, ω) = 1 − tr[φχ] + ‖φ‖ · ‖χ‖ (1)

χ = χ(k, ω) being the screened (total) density response matrix. (Note that the notation used
here is different from the conventional one, where χ is reserved to designate the full (external)
density response function.)

In the RPA [4, 5] the system is described by a diagonal response matrix χ(0) =
dg

(
χ

(0)
1 , χ

(0)
2

)
. In the long-wavelength limit in a two-component system the unperturbed

density response matrix is

χ
(0)
A (k, ω) = χ

(0)
A (k → 0, ω) � n

m

(
k

ω

)2

A = 1, 2. (2)

The corresponding RPA mode structure consists of two longitudinal (in-phase [+] and
out-of-phase [−]) modes, supported by the mean field, without any role played by particle
correlations:

ω2
±0(k) = ω2

2D(k)[1 ± exp(−kd)].

We have introduced here the two-dimensional plasma frequency ω2D =
√

2πne2k/m. Thus
the RPA predicts acoustic behaviour for the out-of-phase mode [4, 5].

For a strongly coupled bilayer the RPA is not appropriate. This situation was analysed
via the quasilocalized charge approximation (QLCA) [1, 2]. The dispersion relation for the
out-of-phase mode in this approximation is dramatically different from its RPA counterpart,
exhibiting a remarkable energy gap at k = 0 induced by interlayer correlations:

ω2
−(k = 0) = −1

2
ω2

0

∫ ∞

0
d(qa) exp(−qd)ng12(q) (3)

where ω0 = (2e2m−1a−3)1/2 and g12(q) is the off-diagonal element of the correlation function
matrix.

We may observe that the out-of-phase plasmon in the strongly correlated liquid phase
corresponds to the out-of-phase optical mode in the crystalline state, identified in [8]. Both
of these are manifestations of a pure correlational effect. So is, of course, the gap which is
isotropic in the liquid, but anisotropic in the solid phase. A more important difference is that
in the Wigner crystal [8] the optical mode is not damped, while in the strongly correlated
liquid phase the out-of-phase plasmon is damped, albeit with a damping rate that decreases as
� grows.

The obvious discrepancy between the qualitative k → 0 behaviour predicted by the RPA
(ω = 0) and the QLCA (ω �= 0) approaches raises the question of how weak correlations
would modify the RPA result. In particular, one would like to know whether there is a
critical minimal coupling value for the gap to appear, or whether even infinitesimally small
correlations induce a gap-like behaviour. The purpose of this paper is to attempt to answer
this question.
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2. The perturbed system

In order to analyse the effect of a weak correlation introduced in the system we have carried out
a perturbation study of the bilayer system in the long-wavelength limit. The calculations have
been done on the basis of the Zhang–Kalman perturbation scheme for the dielectric response
function of a multicomponent plasma [6], formally exact to the first order in the coupling
parameter γ = κ2

2D

/
2πn (κ2D = 2πe2nβ being the 2D Debye wavenumber), which, in

2D, is proportional to �2.
The perturbation calculation for the first-order correction to the density response matrix

in the k → 0 limit provides

χ
(1)
AB(k → 0, ω) = 1

mAmBω4βV2D

∑
q

(k · q)2ψAC(q)

×
∫

δ−(ν)(ηBAη̃BC − η̃BAηBC)
(
χ

(0)

B − χ̃
(0)

B

)
dν (4)

where

η = η(k, ν) = (ε(0)(k, ν))−1 = (I − φ(k)χ(0)(k, ν))−1

η̃(k, ν) = η(k, ω − ν), . . . ,

δ−(ν) = 1

2π i
lim
o↓0

1

ν − io
= P

2π iν
+

δ(ν)

2
.

One can easily see that if mA = mB = m,χ
(1)
AB(k → 0, ω) = −χ

(1)
AA(k → 0, ω). Introducing

the static screening approximation (SSA) [6, 9, 10], for the 2D-bilayer case we obtain

χ
(1)

AB(k → 0, ω) = − (−1)A+B

mAmBω4βV2D

∑
q

(k · q)2ϕ2(q) exp(−2qd)

×
∫

δ−(ν)
(
χ

(0)

A − χ̃
(0)

A

)(
χ

(0)

B − χ̃
(0)

B

)
(ε0)

−2 dν; (5)

here ε0 = ε(0) (k, ω = 0) = 1 + k̃2, with k̃ = k/κ2D. Then, manipulations similar to those
followed in [9] lead to

χ(k → 0, ω) = χ(0)(k → 0, ω) + χ(1)(k → 0, ω)

= n

m

(
k

ω

)2 [
1 0
0 1

]
− βn(2�k̃)2

[
1 −1

−1 1

]
� (6)

� = �(z; �, d̄) =
∫ ∞

0

Z(s) ds

s2
[
s + z

2
√

�
exp

(
z
√

�d̄
s

)]2 (7)

and

Z(s) = 1√
2π

∫ ∞

−∞

exp(−t2/2) dt

t − s
s ∈ C (8)

is the plasma dispersion function [10]. Moreover, in (7) we have introduced the
dimensionless interlayer distance d̄ = d/a and the dimensionless frequency z = ω/ω0, ω0 =
(2e2m−1a−3)1/2.

The dispersion equation, ε(k, ω) = 0, can be expressed as[−mω2�−1κ2
2D − 8mω2κ2Dk�2(1 − b) + mω2

2D�−1κ2
2D(1 − b)

][
mω2 − mω2

2D(1 + b)
] = 0.

(9)
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Figure 1. RPA-like 2D-plasma branch for d̄ = 1.

The dispersion relation factorizes into two independent relationships, the first pertaining
to the out-of-phase, the second to the in-phase mode. This latter, being a centre-of-mass mode,
is unaffected to the order analysed here (as would be the plasmon mode in a 2D or 3D OCP,
due to momentum conservation). We now focus on the out-of-phase mode whose dispersion
relation becomes

ω2 = ω2
2D(k)(1 − b)

1 + 8k̃�2(1 − b)�
. (10)

3. Asymptotic analysis

For small values of z the main contribution to the integral (7) originates from the region of the
integration variable s → 0; therefore we can write, see (8)

Z(s) = −exp

(
− s2

2

) ∫ s

0
exp

(
t2

2

)
dt + i

√
π

2
exp

(
− s2

2

)
� −s + i

√
π/2.

Then,

�(z → 0; �, d̄) � −4�

z2

∫ ∞

0

y

[1 + y exp(2�d̄y)]2
dy

+ i
8�3/2

z3

√
π

2

∫ ∞

0

y2

[1 + y exp(2�d̄y)]2
dy. (11)

For ω → ∞,� → 0, which then leads to the asymptotic solution z = √
ka → ∞ as

k → ∞, for any value of � and d̄ . This is an RPA-like 2D-plasma mode: this feature, that for
k → ∞ the out-of-phase mode approaches the in-phase mode, is quite general and is already
there in the RPA. This explains why there is only very little damping (see figure 1).

To determine the long-wavelength behaviour of (10), the asymptotic form (11) can be
employed, with the new variable ζ = z(ka

√
d̄)−1. The dispersion relation can be written as

ζ 2 − 1

4�
= 4�

∫ ∞

0

y dy

[1 + y exp(2�d̄y)]2
− i

8
√

π
2 �3

ζ ka
√

d̄

∫ ∞

0

y2 dy

[1 + y exp(2�d̄y)]2
. (12)

Should one ignore the imaginary term in (12), one would recover the RPA-like acoustic
dispersion with a �-dependent increased phase velocity. It is clear, however, that for k → 0
the imaginary term is dominant in (12).
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Figure 2. Gap-like branch for d̄ = 1.

Numerical analysis of the equation shows that as k → 0, Re(ζ ) and the decay rate Im(ζ )

are of the same order of magnitude and grow as k−1/3. This behaviour seems to indicate
the breakdown of the perturbation expansion and a tendency to develop the non-perturbative
optical mode predicted in earlier theoretical [5, 6] and computer [10] studies on the dynamics
of strongly coupled charged particle bilayers.

For higher frequencies and k, the dispersion relation (10) now allows a solution such that
4�ka� � 1. Then it seems reasonable to look for a solution of the full dispersion relation
from the simplified expression

z2
∞ = 1

4��(z∞; �, d̄)
. (13)

The numerical solution of (13) leads to a finite (complex) frequency, whose value is almost
independent of k. In this sense this is now a gap-like mode. The details of the numerical
solution of (10) are discussed in the next section and are portrayed in the figures.

4. Numerical results and conclusions

The complex roots of equation (10) have been computed numerically. Some of the results are
presented in figures 1 and 2 for various values of the interlayer distance d̄ and the perturbation
parameter �. As k grows we clearly distinguish two modes: the RPA-like one, with the real
part of the frequency increasing as �, and the saturating one with the gap tendency.

In the immediate neighbourhood of k = 0 the acoustic behaviour is destroyed by the
higher order correction. For somewhat higher k (but still for k � k2D) the slope and the decay
rate of the acoustic mode values of the slope and of the decay rate of the acoustic mode grow
as k−1/3. For intermediate k values a bifurcation of the solutions seems to develop such that:

(i) the plasma mode assumes its RPA behaviour and approaches the in-phase mode with the
dispersion relation ω = ω2D(k) and with weak decay, and

(ii) a new mode develops which terminates in a frequency plateau, this latter has a value
whose magnitude can be identified with that of the gap, this mode undergoes a strong
collisional damping which decreases for higher values of the coupling parameter.

In conclusion, these results indicate that the RPA description is not robust, as it
qualitatively breaks down even at arbitrary weak correlations. The emerging new behaviour
exhibits the tendency to transform the acoustic mode into the predicted optical mode at any
non-zero value of the coupling parameter. At the same time, one does not find the optical
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mode appearing as a direct outcome of the perturbation calculation. In retrospect, this may
not be surprising, since the acoustic behaviour is caused by the mean field, whereas the energy
gap is a pure correlational effect. Perturbation theory builds upon the mean field solution and
thus, it is burdened with an inherent structural failure that prevents it from ever reproducing a
mode whose main ingredient is not the mean field.
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